Lesson Title/Focus	Work input/output \& mechanical advantage	Date	Wednesday, March 192014
Subject/Grade Level	Science 8	Time / Duration	80 mins
Unit	Unit D: Mechanical Systems	Teacher	Koreen Klassen

OUTCOMES FROM ALBERTA PROGRAM OF STUDIES

General Learning Outcomes:	3. Investigate and describe the transmission of force and energy between parts of a mechanical system			
Specific Learning Outcomes:	3.3 identify work input and work output in joules for a simple machine or mechanical system			
LEARNING OBJECTIVES				
Students will: 1. Define mechanical advantage in terms of work input and output 2. Describe how a machine provides a mechanical advantage 3. Calculate mechanical advantage using work input and output				
ASSESSMENTS				
Observations: \quad - Lab procedure				
Key Questions:		- Why might there be discrepancies between ideal and actual force ratios? - How are work input and output values determined?		
Products/Performances: - Guided notes, lab worksheet, practice problems.				
LEARNING RESOURCES CONSULTED MATERIALS AND EQUIPMENT REQUIRED				
- Alberta Programs of Study - Science Focus 8 Textbook \& Teacher Resource			- Lab: spring scale (as many as possible), toy cars (15 ish), string for cars, tape (attach string to car), flat boards for inclined planes, meter sticks, books (to prop up boards) - Guided notes with practice problems notes - Video https://www.youtube.com/watch?v=QrmSIN3 uQfY - PPT for mini-lecture	
PROCEDURE				
Prior to lesson		- Lab materials ready - Video queued up - Photocopy guided notes		
Introduction ${ }^{\text {a }}$ (Time				
Attention Grabber		Lab setup		
Assessment of Prior Knowledge		Why do we use machines? How do they make our lives easier? How do we know they make work easier?		5 min
Expectations for Learning and Behaviour		- Spring scales - be nice to them! - Read instructions carefully and ask questions if you aren't sure what to do - Cooperation with peers		
Advance Organizer/Agenda		1. Video \& guided notes 2. Practice Problems 3. Lab		
Transition to Body		Body		
				Time
Instructional Approach \#1		Video 5 \& Mini Lecture - Mechanical Advantage 1. Students will complete guided notes as they watch the video (0:008:20) https://www.youtube.com/watch?v=OrmSIN3uQfY 2. PowerPoint to reinforce ideas and calculate mechanical advantage using distances instead of forces and introduce ideal vs actual		20 min

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { mechanical advantage (demo) - discuss possible reasons for } \\ \text { discrepancies } \\ \text { BRAIN BREAK - Thumb Peace: Lock your fingers together. You will } \\ \text { try to work together to outline the numbers 0-9 with your thumbs one } \\ \text { at a time. Your thumbs will need to work together while making each } \\ \text { number. So you will have to decide who will be writing the number } \\ \text { forwards and who will write it backwards. }\end{array} & \\ \hline \text { Assessments/ Differentiation: } & \text { Guided notes response }\end{array}\right\}$

Sponge Activity/Activities

Reflections from the
 lesson

Mechanical Systems - Video 5 (Mechanical Advantage)

Guided Notes
Learning Target: What is the advantage to using a mechanical device?
Machines can make work easier for us by \qquad
but without \qquad .

Definition: When a machine increases the force that you exert on an object, we say that the machine creates a \qquad .

Force YOU apply = \qquad Force MACHINE applies = \qquad

Mechanical advantage is comparing
(size of the \qquad compared to the size of the \qquad)

In this picture, should the fulcrum be closer to the load (vehicle) or closer to the effort force (man) to get the best mechanical advantage? \qquad
A lever will give you a \qquad .
This means that the LEVER will do \qquad work than YOU will.

Formula: Mechanical Advantage (MA) $=$ \qquad

Example: Write the equation and calculation for this scenario:

The branch lever has exerted a force that is \qquad times greater than the force you exerted on the branch itself. In other words, the branch has a mechanical advantage of \qquad .

Example: Justin uses a wheelbarrow to lift a load of bricks. The bricks weigh 600N, which is more than Justin could normally carry. However, with the wheelbarrow, Justin can lift the bricks with as little as 120 N . What is the mechanical advantage of the wheelbarrow?

Note: A mechanical advantage GREATER THAN 1 means the machine is applying \qquad force than you; a mechanical advantage LESS THAN 1 means the machine is applying \qquad force than you. What would be the advantage of using a machine if you're applying more force than it?

Practice Questions - Mechanical Advantage

1. If you exert a force of 100 N on a hockey stick, and the stick exerts a force of 20 N on the puck, what is the mechanical advantage of the stick?
2. To pull a weed out of a garden, you apply a force of 50 N to a shovel. The shovel applies a force of 600 N to the weed. What is the mechanical advantage of the shovel?
3. To pry a nail out of the wall, you apply a force of 55 N to the hammer. The hammer applies a force of 650 N to the nail. What is the mechanical advantage of the hammer
4. To lift a block on a movable pulley, you apply a force of 75 N to a rope. The rope applies a force of 750 N to the block. What is the mechanical advantage of the rope?

Lab - Work, Mechanical Advantage, \& Inclined Planes

Mechanical advantage is the comparison of force produced by a machine to the force applied to the machine. In other words, it is the comparison of the size of the load to the size of the effort force. The smaller the effort force compared to the load, the greater the mechanical advantage.

Mechanical Advantage: Output force (load force) Input force (effort force)

An inclined plane is one of the six types of simple machines. It is sometimes called a ramp or slope and it reduces the force you need to exert to lift something.
This lab will demonstrate how inclined planes can provide a mechanical advantage when doing work.
Materials: spring scale, wooden block, lunch tray (as a ramp), stack of books

Procedure:

1. Hook the wooden block to the spring scale. Measure and record the force (N) required to lift the block without using an inclined plane. This measurement is the LOAD FORCE - the total amount of force required to lift the block.
2. Make an inclined plane using the lunch tray and textbooks to prop it up. The number of books will be the independent variable; you will add books to the stack as indicated by the chart below. Measure and record the height of the inclined plane for each stack of books. The height measurements will be the distances used for your calculations of WORK OUTPUT.
3. Measure the length of the tray (this will be the distance used for your calculation of WORK INPUT.)
4. Drag the spring scale and block up the inclined plane. Measure and record the force (N) required to pull the block up the inclined plane. This measurement is the EFFORT FORCE - the force required to be put in by the person dragging the block up the inclined plane.
5. Calculate the mechanical advantage that the inclined plane provides for each of the different heights of the inclined plane.

Data Table

Height of inclined plane (cm)	Effort Force (N)	Length of inclined plane (m)	Work Input (J) $(\mathrm{W}=\mathrm{Fx}$ $\mathrm{D})$	Load Force (N)	Work Output (J) $(\mathrm{W}=\mathrm{Fx}$ $\mathrm{D})$	Mechanical Advantage (Load Force \div Effort Force)
(1 book)						
(3 books)						
(5 books)						
(7 books)						

Table 1. Mechanical advantage produced as a result of varying heights of an inclined plane

Analyzing \& Interpreting

1. Which took more force, lifting the car straight up or using the inclined plane?
\qquad
\qquad
2. Write a statement explaining how the force needed to pull the car up the ramp relates to the length of the ramp. \qquad
\qquad
\qquad
3. Write a statement explaining how the effort force needed to pull the car up the ramp relates to the length of the ramp. \qquad
\qquad
\qquad
4. If you had a ramp that was twice the length of your ramp, would your input force be more or less? Why?
\qquad
\qquad
\qquad
5. Write a statement explaining how inclined planes relate to mechanical advantage.
\qquad
\qquad
\qquad
\qquad
6. Describe and compare work input and work output
