Science 9 Unit B: Matter and Chemical Change UNIT PLAN

Nature of Science Emphasis:

In these units, student attention is focused on the processes by which scientific knowledge is developed and tested, and on the nature of the scientific knowledge is developed and tested. The skills emphasized in these units are the skills of scientific inquiry.

Table of Contents

Big Ideas 3
Focusing Questions
Unit Summary 3
Unit Rationale 3
Learning Outcomes 4
Unit Assessment Plan 6
Unit Schedule: Unit at a Glance7
Daily Unit Schedule8
Performance Task14
Unit Resources17

Big Ideas

- There are many different kinds of materials and each kind has a fixed set of properties.
- A material's fixed set of properties can be used to determine its behavior during a chemical reaction.
- Ideas, theories, and models have been developed over time to help explain observations of chemical change.

Focusing Questions

- What are the properties of materials, and what happens to them during chemical change?
- What evidence do we have of chemical change; and what ideas, theories, or models help us explain that evidence?

Unit Summary

"Different materials have different properties. The ability to distinguish between different substances and make sense of their properties, interactions, and changes requires the development of ideas about chemical substance." -- Alberta Program of Studies

Students will explore and develop ideas about chemical substances through scientific inquiry in the lab.

Unit Rationale

The Alberta Program of Studies has put the "nature of science" emphasis on the grade 9 chemistry unit. As such, students will explore and investigate the topics mainly in the lab. Additionally, students will build on their understanding and skills regarding the scientific method: they will learn to work through the steps of asking a scientific question, doing background research, constructing hypotheses, designing and carrying out experiments to test their hypotheses, analyzing their results, drawing conclusions, and identifying new questions.

Although the chemistry unit is meant to be the second unit, I decided to teach it first for two reasons. One, the emphasis on the nature of science for this unit gives students a solid foundation of understanding what science is, how science happens, and how we as a society come to know the things that we know. Two, my teacher mentors suggested that chemistry is generally the most difficult unit for students, so I wanted to light the metaphorical fire under their butts! I want my students to get used to working hard right away (and while they're still fresh from summer break) in an effort to encourage a strong work ethic.

Learning Outcomes

Skill Outcomes	
1. Investigate materials, and	1. Investigate and describe properties of materials such as melting point, solubility, and conductivity
describe them in terms of their physical and chemical properties	 Describe and apply different ways of classifying materials based on their composition and properties, including:
.,	a. Distinguish between pure substances, solutions, and mechanical mixtures
	b. Distinguish between metals and non-metals
	c. Identifying and applying other methods of classification
	3. Identify conditions under which properties of a material are changed, and critically evaluate if a
	new substance has been produced
2. Describe and interpret patterns in	1. Identify and evaluate dangers of caustic materials and potentially explosive reactions
chemical reactions	2. Describe combustion, corrosion and other reactions involving oxygen
	3. Observe and infer evidence that a chemical reaction has occurred between familiar household materials
	4. Distinguish between materials that react readily and those that do not (e.g., compare reactions of different metals to a dilute corrosive solution)
	 Observe heat generated or absorbed in chemical reactions, and identify examples of exothermic and endothermic reactions
	6. Identify conditions that affect the rates of reactions
	7. Identify evidence for the conservation of mass in chemical reactions, and demonstrate and
	describe techniques by which the evidence is gathered
3. Describe ideas used in interpreting the chemical nature of matter, both in the past and	 Demonstrate an understanding of the origins of the periodic table, and relate patterns in the physical and chemical properties of elements to their positions in the periodic table (at least up to the first 18 elements)
present, and identify example evidence that has contributed to the	 Distinguish between observation and theory, and provide examples of how models and theoretical ideas are used in explaining observations
development of these ideas	3. Use the periodic table to identify the number of protons, electrons, and other information
	about each atom; and describe, in general terms, the relationship between the structure of
	atoms in each group and the properties of elements in that group
	 Distinguish between ionic and molecular compounds, and describe the properties of some common examples of each
4. Apply simplified chemical	1. Read and interpret chemical formulas for compounds of two elements, and give IUPAC name
nomenclature in describing	and common name of these compounds

elements, compounds, and chemical	2. Identify and describe chemicals commonly found in the home, and write their chemical symbols
reactions	3. Identify examples of combining ratios/number of atoms per molecule found in some common
	materials, and use information on ion charges to predict combining ratios in ionic compounds
	of two elements
	4. Assemble or draw simple models of molecular and ionic compounds
	5. Describe familiar chemical reactions, and represent these reactions by using word equations
	and chemical formulas, and by constructing models of reactants and products
Skill Outcomes	
1. Ask questions about the	1. Identify questions to investigate
relationships between and among	2. Define and delimit (set boundaries for) questions and problems to facilitate investigation
observable variables, and plan	3. State a prediction and a hypothesis based on background information or an observed pattern
investigations to address those	of events
questions	4. Select appropriate methods and tools for collecting data and information and for solving
	problems
2. Conduct investigations into the	1. Carry out procedures, controlling the major variables
relationships between and among	2. Observe and record data, and prepare simple drawings
observations, and gather and record	3. Demonstrate knowledge of WHMIS standards, by using proper techniques for handling and
qualitative and quantitative data	disposing of lab materials
	4. Research information relevant to a given question
3. Analyze qualitative and	1. Compile and display data, by hand or computer, in a variety of formats, including diagrams,
quantitative data, and develop and	flow charts, tables, bar graphs, line graphs, and scatterplots
assess possible explanations	2. Calculate the theoretical values of a variable
	3. Identify and suggest explanations for discrepancies in data
	4. State a conclusion, based on experimental data, and explain how evidence gathered supports
	or refutes an initial idea
	5. Identify new questions and problems that arise from what was learned
4. Work collaboratively on problems;	1. Receive, understand, and act on the ideas of others
and use appropriate language and	2. Evaluate individual and group processes used in planning and carrying out investigative tasks
formats communicate ideas,	
procedures, and results	
Attitude Outcomes	
1. Interest in science	Show interest in science-related questions and issues, and confidently pursue personal interests
	and career possibilities within science-related fields

2. Mutual respect	Appreciate that scientific understanding evolves from the interaction of ideas involving people with different views and backgrounds
3. Scientific inquiry	Seek and apply evidence when evaluating alternative approaches to investigations, problems, and
	issues
4. Collaboration	Work collaboratively in carrying out investigations and in generating and evaluating ideas
5. Stewardship Demonstrate sensitivity and responsibility in pursuing a balance between the needs of a sustainable environment	
6. Safety	Show concern for safety in planning, carrying out, and reviewing activities

Unit Assessment Plan

Activity	Outcomes	Formative	Summative	Date	Weight
KWL	Pre-assessment	\checkmark		Sept. 4	n/a
Individual Whiteboards	varies	\checkmark		varies	n/a
Exit slips	Most knowledge outcomes	\checkmark		Daily	n/a
Frayer Models, SEE-I, Venn	K1.1, 1.2, 2.1, 2.5, 3.2, 3.4	✓		varies	n/a
diagrams etc.					
Quizzes (group/partner)	varies	\checkmark		varies	n/a
Worksheets	varies	\checkmark		varies	n/a
Lab Reports	Varies (skills & knowledge outcomes)	\checkmark		varies	n/a
Quizzes (individual)	Quiz 1: K3.2, K2.1, K1.2, K1.5, K2.3, K2.7		✓	Sept. 15	16.5%
	Quiz 2: K3.1, 3.2, 3.3, 3.4, 4.1			Sept. 22	16.5%
[Nature of Science Emphasis] Performance	GLO 1, K2.5, 2.6, 3.2, 3.4, 4.2, 4.5		✓	Sept 25 - 28	16.5%
Task with Lab Report	S1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2				
	ICT F.3.3, C.7.2				
Unit Test	Most knowledge outcomes		\checkmark	Oct 1	50%

Calendar: Unit at a glance

September – Monday	Tuesday	Wednesday	Thursday	Friday
31	1	2 FIRST DAY OF SCHOOL	3	4
				Lab safety
		Intro/PLE & course outline	Nature of science	
7	8	9	10	11
HOLIDAY	Soap lab	Topic 1: Exploring (classifying) matter	Topic 2: changes in matter	Conservation of Mass
14	15	16	17	18
	Quiz		Topic 6: Chemical	Topic 6: chemical
Atomic theory		Topic 5: periodic table	compounds	compounds
webquest	Origins & patterns in the PT			
21	22 Quiz	23	24	25
Topic 7: chemical	Quiz	Naming molecular	Reaction rate	Performance task
reactions	Naming Ionic	compounds	Reaction rate	
	compounds	compounds		
28	29	30	October 1	
Performance Task	Performance Task	Review	UNIT TEST	

Calendar: Daily unit schedule

Lesson Title	Date & Time	Outcomes	Instructional strategies/activities	Assessments	Materials
Course Intro	Sept 2 20 min	N/A	 Intro to me, course outline, quick tour of the classroom, innakotsiiyinni Ice breakers: switch sides if; ball bomb game? Let ss know I will be emailing them an introduction and asking them for some info If time, do elephant toothpaste – address related questions (AEIOU) If time, get discussions going about recent news in science (e.g. eating bugs as a protein source) Think-pair-share Homework: fill out student interest survey REMIND ss to bring photo ID to get textbooks 	Assessment of general understanding of science through discussion	 "switch sides if" questions Name tags, markers 2 soft foam balls; Course outline; Demo: hydrogen peroxide, yeast, dish soap, food coloring, beaker, garbage bag or plastic tray (to contain the mess); Links to news articles Student interest surveys
Nature of Science & course overview	Sept 3 75 min	N/A	 Monty Python video clip; discussion – what is science? Nature of science survey (20 min) What is science? Video clip (13 min) KWL for chemistry (in groups) (20 min) Fill out in groups of 3-4 (leave extra room), then gallery walk with stickers Ss return to their own and add anything they forgot Leave posters up in classroom – will return at end of unit (or use as exit tickets) 	Discussion (F) KWL (pre- assessment)	https://www.youtube.com/watch?v =ZEKsiOjjbsg (4 min) Nature of science – survey cards PPT What is science? Video clip: https://www.youtube.com/watch?v =YwYEy5AXwIQ Flip chart paper/poster board (can cut in half) Tape to put up posters Stickers for ss Markers
KWL & atomic theory webquest	Sept 4 75 min	3.2 I can distinguish between observation and theory, and I can provide examples of how models and theoretical ideas are used in explaining observations S2.4 ICT C.1.1, C.3.2, C.7.2	 Meme: "gravity : just a theory" FITB notes (15 min) Observation vs theory Models and theoretical ideas help explain observations (brainstorm examples) Intro to the atom – ss will find out the rest in the Webquest Atomic theory (observations lead to theories) – Webquest (35 min) 	Discussion (F) Webquest worksheet (F)	Flip chart paper/poster board (can Webquest <u>http://thompsonsclass.com/atom.p</u> <u>hp</u> & worksheet (in folder)

			WEEK 1		
	Sept 8	2.1 Identify and evaluate	Atomic theorists matching game (review) (15 min)	Certification (F)	Video clips
Lab Safety		dangers of caustic materials			FITB notes
/	75 min	and potentially explosive	Lab Safety (15 min)	Scenarios (F)	scenarios
		reactions	- Watch lab safety video with FITB notes		
			- FITB notes: <u>http://lsteam.org/zombie-</u>		
		S2.3	college/docs/zombie college 5 rules classro		
			om activity.pdf		
			 5 rules of lab safety video: 		
			https://youtu.be/S6WARqVdWrE (11)		
			FITB notes (10 min)		
			- WHMIS		
			- Caustic & potentially explosive reactions		
			Tableau – groups of 4 (drama outcome?)		
			 Use props (draw the symbols and put them on 		
			beakers, etc., draw flame		
			 There should be at least 4 lab safety issues 		
	Sept 9	1.2 Describe and apply different	 classification demo (15 mins) 		
Classifying		ways of classifying materials	- FITB notes (15 mins)		Examples of solids, liquids, gases,
matter	75 min	based on their composition and	 -3 ways to classify matter 	Group quiz (F)	metals & non-metals, solutions &
		properties, including:	- group quiz (10 mins)		pure substances
		a. Distinguish between pure	- go over as a class	Lab Qs – results	
		substances, solutions, and	- Lab: pure substance or solution? (25 min)	and discussion	FITB notes & PPT
		mechanical mixtures	 How would you classify each substance 	(F)	Quiz questions
		b. Distinguish between metals	and why?		Lab: mystery vials, procedure sheets
		and non-metals	- which substances were most difficult to		
		c. Identifying and applying	classify?		
		other methods of classification	- Cleanup & exit ticket (Got it – almost – nope &		
	Cont 10	S2.3	hand in lab assignment)		Carbaga bag(a) atu darat
	Sept 10	1.5 I can identify conditions	brainstorm "proportios" of materials	Group quiz (F)	Garbage bag(s), student
Physical and	75 min	under which properties of a	 brainstorm "properties" of materials →weight rating of a garbage bag as a physical property vs 	Lab Qs (F) –	books/binders, match, something safe in which to burn the bag
chemical	75 11111	material are changed, and I can	burning the bag as a chemical property	procedure,	sale in which to burn the bag
change		critically evaluate if a new	- FITB notes & PPT	results,	FITB notes & PPT
change		substance has been produced	- chemical or physical group quiz	discussion	Quiz questions
			- Lab: physical and chemical changes		Lab:
		2.3 I can observe and infer	- has a new substance been produced?		
		evidence that a chemical	- what evidence is there that a chemical		
		reaction has occurred between	reaction has occurred?		
		familiar household materials			

	Cont 11	2.71 consideratify and demand		Lab date 0	Quimas
Companyation (Sept 11	2.7 I can identify evidence for		Lab data &	Quizzes
Conservation of		the conservation of mass in	- Lab set up (hook)	analysis	
mass	75 min	chemical reactions, and I can	- FITB notes & PPT (direct instruction)	questions	FITB notes/PPT
		demonstrate and describe	o Theories/models		
		techniques by which that	 Law of Conservation of Mass (15 		Lab: Steel wool, balloon, 250mL
		evidence is gathered	mins)		Erlenmeyer flask, vinegar, balance
			 Lab: mass & chemical change (30 mins/55) 		
	1		WEEK 2		
	Mon.	3.1 I can demonstrate an	 Flame test demo (10 min) 	Create your	Flame test – ion solutions, wire
	Sept 14	understanding of the origins of	 Periodic table battleship (20 mins) 	own element (F)	loops, Bunsen burner, matches
Origins of and		the periodic table, and relate	- http://www.periodictable.com/Elements/034/		
patterns within	75 min	patterns in the physical and	index.html		PT battleship boards, dry erase
the PT		chemical properties of	 FITB notes & PPT (direct instruction) 		markers, erasers
		elements to their positions in	 Origins of the periodic table 		
		the periodic table (at least up	 Element symbols 		PPT, FITB notes
		to the first 18 elements)	• Metals vs non-metals		
		2.4 I can distinguish between	 Chemical families – group 1 reactivity 		
		materials that react readily and	with water video clips (20 min)		
		those that do not (e.g., I can	- Create your own element: describe its		
		compare reactions of different	properties and justify its place in the periodic		
		netals to a dilute corrosive	table; describe its reactivity in relation to		
		solution)	other elements in its group (formative) (20		
		S4.1, ICT C.7.1	min)		
			,		
	Tues.		"Think like a proton and be positive" and other	Whiteboards (F)	Quiz
Topic 5: The	Sept 15	3.3 I can use the periodic table	jokes about the periodic table	Bingo (F)	Quiz
periodic table	Sept 15	to identify the number of	Jokes about the periodic table	Worksheet (F)	FITB notes & PPT
		protons, electrons and other	Quiz	Worksheet (F)	
		information about each atom:			Bingo sheets & questions
		I can describe, in general	FITB notes		worksheet
		terms, the relationship	- Information that the periodic table gives us		worksheet
		between the structure of	(mass number, protons, electrons, neutrons,		
		atoms in each group and the	valence electrons) (20 min)		
		properties of elements in that	•		
		group			
			- Worksheet (10 min)		
) A /		Coltain and the state of the Coltain Coltain		Males alla
	Wed.	4.1 I can read and interpret	Salt vs sodium – what's the difference?	marshmallow	Video clip
	Sept	chemical formulas for	https://www.youtube.com/watch?v=YvSkXd_VVYk	modelling	
	16	compounds of two elements		worksheet (F)	FITB notes/PPT

Topic 6: chemical compounds	75 min	 4.4 Assemble or draw simple models of molecular and ionic compounds 4.3 (a) I can identify examples of combining ratios/number of atoms per molecule found in some common materials S2.2 	 FITB notes & PPT (direct instruction) Reading and interpreting chemical formulas Combining in ratios Ionic and molecular (intro) Marshmallow modelling activity; elements combine in ratios (Worksheet) 		Marshmallows & toothpicks worksheets
Topic 6: chemical compounds Charges, predicting combinations	Thurs Sept 17 75 min	4.3 (b) use information on ion charges to predict combining ratios in ionic compounds of two elements S4.1	Sugar solution vs salt solution vs salt pile demo PPT/notes - Ionic compounds - Oxidation numbers - Predicting how elements will combine Ionic speed dating activity	Speed dating worksheet (F)	Sugar solution, salt solution, salt & conductivity tester PPT/notes Ionic speed dating worksheet
	Fri. Sept 18 50 min	 K1.1 Investigate and describe properties of materials such as melting point, solubility, and conductivity 3.4 Distinguish between ionic and molecular compounds, and describe the properties of some common examples of each S2.3, 3.1, 3.3 ICT C.6.1 	Recall: salt/sugar conductivity demo NOTES/PPT - Properties of ionic compounds - Properties of molecular compounds Lab: Comparing Ionic and Molecular Properties pg 142 SF	Lab data, analysis & Venn diagram	FITB notes/PPT Lab: wax shavings, potassium iodide, sodium chloride, sugar, Epsom salts, 200 mL beakers, stir sticks, scoopulas, hot plates, conductivity testers Lab handouts
Naming ionic compounds	Sept 21	4.1 I can read and interpret chemical formulas for compounds of two elements, and give IUPAC name and common name of these compounds	WEEK 3 "telephone" style chemical formula demo – naming is important FITB notes & PPT (direct instruction) - Naming ionic compounds & group quiz Naming ionic compounds worksheet	Group quiz (F) Worksheet (F)	Chemical formula cards for demo FITB notes/PPT
Naming Molecular compounds	Sept 22	4.1 I can read and interpret chemical formulas for compounds of two elements,	Recall naming rules for ionic compounds FITB notes & PPT	Individual whiteboards (F)	Whiteboards, markers, erasers PPT/notes

		and give IUPAC name and common name of these compounds	 Molecular compounds: ending changed to "ide" AND use prefixes (mono, di, tri, etc.) 	Naming worksheet	Naming worksheet
Topic 7: chemical reactions	Sept 23	 2.5 I can observe heat generated or absorbed in chemical reactions, and identify examples of exothermic and endothermic reactions 4.5 I can describe familiar chemical reactions, and represent these reactions by using word equations and chemical formulas, and by constructing models of reactants and products 	Quiz Demo: elephant toothpaste (exothermic reaction) FITB notes - Chemical reactions: reactants and products - Evidence of chemical reactions - Chemical equations - Breaking chemical bonds - Exothermic & endothermic (20 min) Models of reactants & products worksheet	Quiz (S) Worksheet (F)	Quizzes Elephant toothpaste: dish soap, potassium iodide, food coloring, hydrogen peroxide, Erlenmeyer flask, tray for containment FITB notes/PPT Chemical equations worksheet
Topic 8: Reaction rate	Sept 24	 2.2 I can describe combustion, corrosion and other reactions involving oxygen 2.6 I can identify conditions that affect rates of reactions S1.3, 2.2, 3.1 	 Demo – whoosh bottle: is this exothermic or endothermic? → transition to combustion FITB Combustion, corrosion, photosynthesis, cellular respiration Factors affecting rates of reaction Lab of demos Reaction rates (20 min) with demo/lab (students make observations and determine the factor affecting the reaction rate) Corn starch demo (surface area) Glow stick demo (temperature) Vinegar/chalk demo (concentration) Elephant toothpaste (catalyst) Introduce performance task (20 min) 	Lab of demos write-up (F)	Whoosh bottle, isopropyl alcohol, matches, safety goggles, fire extinguisher PPT/notes Lab: corn starch, BBQ lighter, glow sticks, hot & cold water, chalk, weak & strong acetic acid, elephant toothpaste ingredients Demo/Lab handout Performance task handout

	Sept	GLO 1, K2.5, 2.6, 3.2, 3.4, 4.2,	In pairs, students will design and conduct an	Full lab report	Lab materials, task handout (below)
Performance	25, 28,	4.5	experiment to explore the effect of one of the	(S) (Rubric	
Task	29		factors affecting reaction rates on the rate of the	below)	
		\$1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 3.1,	breakdown of hydrogen peroxide by yeast (Full		
		3.3, 3.4, 4.1, 4.2	task shown below)		
		ICT F.3.3, C.7.2			

Reaction Rates Performance Task

You will be investigating chemical reactions. During this activity, you will work with a partner (or possibly two partners). However, you must keep your own individual lab notes because after you finish you will work independently to write a report about your investigation.

The Problem

Millions of chemical reactions are occurring in your body all of the time. Hydrogen peroxide, H2O2, a substance that is poisonous to cells, is a by-product of some of these chemical reactions. Most living things, including yeast, contain an enzyme that helps the breakdown of hydrogen peroxide into other substances that are not poisonous. The reaction between hydrogen peroxide and yeast is similar to the breakdown of hydrogen peroxide that can occur in the cells of your body. Yeast is a catalyst that allows the reaction to take place.

When yeast and hydrogen peroxide are mixed together, hydrogen peroxide, H2O2, is broken down into water, H2O, and oxygen gas, O2, as shown below.

Yeast + H_2O_2 \longrightarrow $H_2O + O_2$

Your Task

A number of different variables, such as the concentration of the hydrogen peroxide solution, the relative amount of yeast, and the temperature at which the reaction occurs, can affect the rate at which yeast breaks down hydrogen peroxide. Today you and your partner(s) will design and conduct an experiment to explore the effect of one of the factors on the rate of the breakdown of hydrogen peroxide by yeast.

Materials

You have been provided with the following materials and equipment. It may not be necessary to use all of the equipment that has been provided. You may use additional materials or equipment if they are available:

Hydrogen peroxide (3%)	Forceps	
Packet of yeast	5 paper cups	
20 pieces of felt	1 small lid for paper cup	
5 test tubes, brush, and rack	2 Styrofoam cups	
Labeling dots	2 lids for Styrofoam cups	
Access to ice/ice water	3 plastic spoons	
Access to tap water	Graduated cylinder	
Access to a clock with a second hand	Thermometer	
Access to a calculator	Access to warm water (50°-60°C)	
Paper towels for cleanup	Balloons/ Gas collectors	
Safety equipment to include splash proof goggles and aprons		
, , , , , , , , , , , , , , , , , , , ,		

Yeast solution should be anywhere from 50 to 200 ml of water for each packet.

Hydrogen peroxide should be anywhere from 100 to 500 ml of water for every 10 ml of hydrogen peroxide.

One method to time the rate of the reaction is to fill one test tube about 3/4 full with the hydrogen peroxide solution. Using the forceps, soak a piece of felt in the yeast solution and then drop it into the test tube containing hydrogen peroxide solution. The felt should sink to the bottom of the test tube. As the yeast helps break down the hydrogen peroxide, oxygen gas bubbles are formed on the felt and it rises to the top as illustrated in the diagram below. Another method is to time how long it takes a balloon to fill with oxygen gas.

"REACTIONS" DIRECTIONS:

- 1. Select one variable, either temperature or the concentration of the hydrogen peroxide solution or concentration of yeast solution. You will explore the effect of this variable on the rate of breakdown of hydrogen peroxide by yeast.
- 2. In your own words, clearly state the problem you are going to investigate. Include a clear definition of the controlled, manipulated, and responding variables that will be studied.
- 3. Design an experiment to solve the problem. Your experimental design should match your statement of the problem, should control the variables, and should be clearly described so that someone else could easily replicate your experiment. Include a control if appropriate. Show your design to your teacher before you begin your experiments.
- 4. After receiving permission from your teacher, work with your partner to carry out your experiments. Your teacher's approval does not necessarily mean that your teacher thinks your experiments are well designed. It simply means that in your teacher's judgment your experiments are not dangerous or likely to cause an unnecessary mess.

5. While conducting your experiments, take careful notes on the pages provided. Space is also provided for charts, tables, or graphs. Your notes will not be scored, but they will be helpful to you later as you work independently to write about your experiments and the results. You must keep your own notes because you will not work with your lab partner when you write your report.

Directions for Writing Your Laboratory Report

Working on your own, summarize your experiments and results. You may use your own notes that you took previously while working with your partner Your report should include:

- A clear statement of the problem you investigated. Include a clear identification of the independent and dependent variables that were studied.
- A description of the experiment you carried out. Your description should be clear and complete enough so that someone could easily replicate your experiment.
- The results of your experiment. Tables, charts, and/or graphs should be used where appropriate and should be properly labeled. Space for your data is provided.
- Your conclusions from your experiment. State the trends you found as accurately as possible. Your conclusions should be fully supported by data.
- Comments about how valid you think your conclusions are. In other words, how much confidence do you have in your results and conclusions? Any factors that contribute to a lack of confidence in the results or conclusions should be discussed. Also, include the ways that your experiment could be improved if you were to do it again.

Ru	bric

Problem Definition

٠	The problem is stated clearly. Clear identification of independent and dependent variables	3
٠	The problem is stated adequately. Adequate identification of independent and dependent variables	2
٠	The problem is poorly stated. Poor identification of independent and dependent variables	1
٠	The statement of the problem is very limited or missing altogether. No identification of variables	0

Experimental Design

•	The experimental design matches the stated problem. Variables are controlled. The procedures are clear, complete, and replicable. A control is included if appropriate
•	The experimental design generally matches the stated problem. Attempt at controlling variables is made. Procedures are generally complete. Minor modifications or clarifications may be needed
•	The experimental design matches the stated problem to some extent. Little attempt to control variables.
•	Procedures are incomplete. Major modifications or clarifications may be needed1
•	The experimental design does not match the stated problem, is very incomplete or missing. There is no attempt to control variables
	Data Presentation (Graphs)
•	Data are well organized and presented in an appropriate manner

- Data are poorly organized or presented in an inappropriate manner. Major omissions or errors may be present.....1
- Data are very poorly organized or presented in an inappropriate manner or missing altogether0

Conclusions/Validity

•	Conclusions are related to the stated problem and fully supported by data and the validity of .the conclusions are discussed	3
•	Conclusions are generally related to the stated problem and supported by data. Minor errors in interpretation of results may be present. Discussion	of the validity of
	conclusions is limited	2
•	Conclusions are related to the stated problem and supported by data to a limited extent. Major errors in the interpretation of results may be presen	t. There is little
	discussion of the validity of conclusion	.1
-	Conclusions are not related to the stated problem, not supported by data or are missing. There is no discussion of conclusions	0

Unit Resources		
Science Focus 9	Alberta program of studies	YouTube – Periodic Table of Videos
Science in Action 9	engagingstudents.blackgold.ca	YouTube – TED ED
Learnalberta.ca	YouTube – Bozeman Science	www.ptable.com